Search results for "Dicarboxylic Acid Transporters"
showing 10 items of 19 documents
Transport of C(4)-dicarboxylates in Wolinella succinogenes.
2000
ABSTRACT C 4 -dicarboxylate transport is a prerequisite for anaerobic respiration with fumarate in Wolinella succinogenes , since the substrate site of fumarate reductase is oriented towards the cytoplasmic side of the membrane. W. succinogenes was found to transport C 4 -dicarboxylates (fumarate, succinate, malate, and aspartate) across the cytoplasmic membrane by antiport and uniport mechanisms. The electrogenic uniport resulted in dicarboxylate accumulation driven by anaerobic respiration. The molar ratio of internal to external dicarboxylate concentration was up to 10 3 . The dicarboxylate antiport was either electrogenic or electroneutral. The electroneutral antiport required the prese…
The Fumarate/Succinate Antiporter DcuB of Escherichia coli Is a Bifunctional Protein with Sites for Regulation of DcuS-dependent Gene Expression
2008
DcuB of Escherichia coli catalyzes C4-dicarboxylate/succinate antiport during growth by fumarate respiration. The expression of genes of fumarate respiration, including the genes for DcuB (dcuB) and fumarate reductase (frdABCD) is transcriptionally activated by C4-dicarboxylates via the DcuS-DcuR two-component system, comprising the sensor kinase DcuS, which contains a periplasmic sensing domain for C4-dicarboxylates. Deletion or inactivation of dcuB caused constitutive expression of DcuS-regulated genes in the absence of C4-dicarboxylates. The effect was specific for DcuB and not observed after inactivation of the homologous DcuA or the more distantly related DcuC transporter. Random and s…
Polar Localization of a Tripartite Complex of the Two-Component System DcuS/DcuR and the Transporter DctA in Escherichia coli Depends on the Sensor K…
2014
The C4-dicarboxylate responsive sensor kinase DcuS of the DcuS/DcuR two-component system of E. coli is membrane-bound and reveals a polar localization. DcuS uses the C4-dicarboxylate transporter DctA as a co-regulator forming DctA/DcuS sensor units. Here it is shown by fluorescence microscopy with fusion proteins that DcuS has a dynamic and preferential polar localization, even at very low expression levels. Single assemblies of DcuS had high mobility in fast time lapse acquisitions, and fast recovery in FRAP experiments, excluding polar accumulation due to aggregation. DctA and DcuR fused to derivatives of the YFP protein are dispersed in the membrane or in the cytosol, respectively, when …
The cytoplasmic PASC domain of the sensor kinase DcuS of Escherichia coli : role in signal transduction, dimer formation, and DctA interaction
2013
The cytoplasmic PAS(C) domain of the fumarate responsive sensor kinase DcuS of Escherichia coli links the transmembrane to the kinase domain. PAS(C) is also required for interaction with the transporter DctA serving as a cosensor of DcuS. Earlier studies suggested that PAS(C) functions as a hinge and transmits the signal to the kinase. Reorganizing the PAS(C) dimer interaction and, independently, removal of DctA, converts DcuS to the constitutive ON state (active without fumarate stimulation). ON mutants were categorized with respect to these two biophysical interactions and the functional state of DcuS: type I-ON mutations grossly reorganize the homodimer, and decrease interaction with Dct…
Functioning of DcuC as the C 4 -Dicarboxylate Carrier during Glucose Fermentation by Escherichia coli
1999
ABSTRACT The dcuC gene of Escherichia coli encodes an alternative C 4 -dicarboxylate carrier (DcuC) with low transport activity. The expression of dcuC was investigated. dcuC was expressed only under anaerobic conditions; nitrate and fumarate caused slight repression and stimulation of expression, respectively. Anaerobic induction depended mainly on the transcriptional regulator FNR. Fumarate stimulation was independent of the fumarate response regulator DcuR. The expression of dcuC was not significantly inhibited by glucose, assigning a role to DcuC during glucose fermentation. The inactivation of dcuC increased fumarate-succinate exchange and fumarate uptake by DcuA and DcuB, suggesting a…
A Na+-coupled C4-dicarboxylate transporter (Asuc_0304) and aerobic growth of Actinobacillus succinogenes on C4-dicarboxylates
2014
Actinobacillus succinogenes, which is known to produce large amounts of succinate during fermentation of hexoses, was able to grow on C4-dicarboxylates such as fumarate under aerobic and anaerobic conditions. Anaerobic growth on fumarate was stimulated by glycerol and the major product was succinate, indicating the involvement of fumarate respiration similar to succinate production from glucose. The aerobic growth on C4-dicarboxylates and the transport proteins involved were studied. Fumarate was oxidized to acetate. The genome of A. succinogenes encodes six proteins with similarity to secondary C4-dicarboxylate transporters, including transporters of the Dcu (C4-dicarboxylate uptake), Dcu…
Fumarate regulation of gene expression in Escherichia coli by the DcuSR (dcuSR genes) two-component regulatory system.
1998
ABSTRACT In Escherichia coli the genes encoding the anaerobic fumarate respiratory system are transcriptionally regulated by C 4 -dicarboxylates. The regulation is effected by a two-component regulatory system, DcuSR, consisting of a sensory histidine kinase (DcuS) and a response regulator (DcuR). DcuS and DcuR are encoded by the dcuSR genes (previously yjdHG ) at 93.7 min on the calculated E. coli map. Inactivation of the dcuR and dcuS genes caused the loss of C 4 -dicarboxylate-stimulated synthesis of fumarate reductase ( frdABCD genes) and of the anaerobic fumarate-succinate antiporter DcuB ( dcuB gene). DcuS is predicted to contain a large periplasmic domain as the supposed site for C 4…
DctA- and Dcu-independent transport of succinate in Escherichia coli : contribution of diffusion and of alternative carriers
2001
Quintuple mutants of Escherichia coli deficient in the C4-dicarboxylate carriers of aerobic and anaerobic metabolism (DctA, DcuA, DcuB, DcuC, and the DcuC homolog DcuD, or the citrate/succinate antiporter CitT) showed only poor growth on succinate (or other C4-dicarboxylates) under oxic conditions. At acidic pH (pH 6) the mutants regained aerobic growth on succinate, but not on fumarate. Succinate uptake by the mutants could not be saturated at physiological succinate concentrations (≤5 mM), in contrast to the wild-type, which had a K m for succinate of 50 µM and a V max of 35 U/g dry weight at pH 6. At high substrate concentrations, the mutants showed transport activities (32 U/g dry weigh…
L‐Aspartate as a high‐quality nitrogen source in Escherichia coli : Regulation of L‐aspartase by the nitrogen regulatory system and interaction of L‐…
2020
Escherichia coli uses the C4-dicarboxylate transporter DcuA for L-aspartate/fumarate antiport, which results in the exploitation of L-aspartate for fumarate respiration under anaerobic conditions and for nitrogen assimilation under aerobic and anaerobic conditions. L-Aspartate represents a high-quality nitrogen source for assimilation. Nitrogen assimilation from L-aspartate required DcuA, and aspartase AspA to release ammonia. Ammonia is able to provide by established pathways the complete set of intracellular precursors (ammonia, L-aspartate, L-glutamate, and L-glutamine) for synthesizing amino acids, nucleotides, and amino sugars. AspA was regulated by a central regulator of nitrogen meta…
Identification of a third secondary carrier (DcuC) for anaerobic C4-dicarboxylate transport in Escherichia coli: roles of the three Dcu carriers in u…
1996
In Escherichia coli, two carriers (DcuA and DcuB) for the transport of C4 dicarboxylates in anaerobic growth were known. Here a novel gene dcuC was identified encoding a secondary carrier (DcuC) for C4 dicarboxylates which is functional in anaerobic growth. The dcuC gene is located at min 14.1 of the E. coli map in the counterclockwise orientation. The dcuC gene combines two open reading frames found in other strains of E. coli K-12. The gene product (DcuC) is responsible for the transport of C4 dicarboxylates in DcuA-DcuB-deficient cells. The triple mutant (dcuA dcuB dcuC) is completely devoid of C4-dicarboxylate transport (exchange and uptake) during anaerobic growth, and the bacteria are…